## Consciousness, Physics, and the Holographic ParadigmOriginal Essays and Shadowless Poetry by Alan T. Williams All matter is immersed in it and it penetrates everywhere. No doors are closed to ether.
## Chapter 3: The Unexamined Alternatives## Section 1: Einstein, Maxwell, and Energy:James Clerk Maxwell and Albert Einstein are inextricably linked in scientific history through Maxwell's electrodynamic field theory, Einstein's quantization of electromagnetic radiation in his paper explaining the photoelectric effect, and the special theory of relativity. Following classical (Newtonian) physics Maxwell developed A Dynamical Theory of the Electromagnetic Field as his mathematical interpretation of Michael Faraday's laboratory experiments in electricity and magnetism. Einstein was born in 1879, the year Maxwell died at age 48. He submitted the special theory of relativity (SRT) – a critique and extension of Maxwell's electromagnetic field dynamics (kinematics) – as his second paper of 1905. Einstein's first paper of 1905, the explanation of the photoelectric effect, used Max Planck's quantum of energy in an unexpected way by quantizing the energy-matter interaction of light. As it turned out, the quantization of electromagnetic radiation was more revolutionary than even Einstein himself imagined because it not only provided the specific heat solution for 19th century thermodynamics, it also provided the second small step toward understanding nonmechanical, nonmaterial energy-matter interactions in the 20th century. Planck's intuitive discovery of the energy quantum was the first step. Einstein's writings suggest that he concluded the popular luminiferous ether of the 19th century was untenable sometime prior to 1905. Nonetheless, his radical excision of the material ether in special relativity failed to solve the persistent theoretical problem of discovering the common foundation from which classical physics, thermodynamics, and Maxwell's equations could be derived. Indeed, another century would pass before the universal principle of energy (TUPE) and the fundamental, irreducible nonmaterial primordial energy domain (NED) were discovered. Einstein himself inflexibly continued to think exclusively in atomistic and deterministic terms. While he openly removed the rigid Lorentzian ether from his special theory of relativity, he quietly replaced the rigid mechanical connections with Lorentz's invariant transformation equations. During the development of general relativity theory Einstein moved beyond Lorentz invariance to generally covariant field equations in order to solve certain mathematical problems he encountered. 2 Nonmaterial energy theory and experiment, however, had already suffered nearly fatal damage in the early 20th century. Declaring the rigid Maxwell-Hertz-Lorentz ether superfluous was instrumental in disrupting the search for a viable alternative to the material ether by interested others, particularly in the physical chemistry community. Happily, the unexpected discovery of the universal principle of energy (TUPE) provides new insight into the fundamental, irreducible nonmaterial primordial energy domain (NED) which, following Einstein, is characteristically absent in 20th century physics. ## Maxwell's view of energy:Thomas Young (1773-1829), the chemistry, physics, and biophysics researcher, lecturer, and first Professor of Natural Philosophy at The Royal Institution of Great Britain in London, England, proposed in 1801 that the concept of potential and kinetic energy be used in conjunction with the mechanical force described in Newton's Second Law of Motion. Elaborating on the significance of Young's innovative concept of mechanical energy in 1877, Clerk Maxwell wrote:
Clearly the 19th century concept and physical definition of the energy present in a material system was limited to mechanical potential and kinetic energy. Thus, although enhanced by the discovery of many different forms of mechanical energy, contemporary classical and quantum physics are traditionally limited by adhering to Young's early definition. ## Einstein's energy assumptions revisited:The numerous imponderable fluids of the 18th century were reduced to only two in the 19th century; namely, imponderable radiant matter and imponderable radiant energy. The search for radiant matter led from electricity and magnetism through Ampère, Faraday, Maxwell, Helmholtz, Hertz, and Crookes to J.J. Thomson's 1897 discovery of the electron. Thomson's experiments demonstrated that the electron possesses mass and is, therefore, ponderable matter. The search for radiant energy led from electricity and magnetism to thermodynamics through Faraday, Maxwell, Clausius, and Boltzmann to Max Planck's intuitive 1900 discovery of the massless quantum of energy in blackbody radiation. X-rays, discovered by Wilhelm Röntgen in 1895 and originally thought to be radiant matter, were later proved to be an integral part of the massless, radiant electromagnetic energy spectrum. Inexplicably, Maxwell's dynamical electromagnetic field theory was not included in the curriculum during the years Einstein was a student at the Polytechnic Institute of Zürich (ETH). Hence, as a voraciously inquisitive reader of extracurricular material while others attended class and took notes they later shared with him, Einstein learned Maxwell's electromagnetic theory through self study. Subsequently, for the rest of his life Einstein conflated his own understanding of Maxwell's work with Henri Becquerel's 1897 discovery of radioactive radiation and its further development by Pierre and Marie Curie, each of whom shared the 1903 Nobel Prize in Physics, by unconventionally treating all radiation – including the massless photons of imponderable visible light and the massless photons of imponderable heat radiation – as if it was an atomic or molecular gas statistically analogous to radioactive radiation that possesses material mass (α and β decay). In his 1938 book, Energy, at any rate kinetic energy, resists motion in the same way as ponderable masses. Is this also true of all kinds of energy? Einstein correctly perceived a fundamental relationship between mass and energy. Nonetheless, his mass-energy equivalence is limited by classical physics and the de facto absolute reference frame of a closed or isolated (conservative) material system adopted from physical chemistry that he unilaterally generalized to physics as a whole. Following the classical energy physics developed by Young and Maxwell, Einstein's assertion that "energy has mass and mass represents energy" describes only the mass-energy equivalence of mechanical work performed in a closed or isolated (conservative) material system. Thus, in essence, Einstein simply exchanged Ernst Mach's absolute space for an Einsteinian absolute closed or isolated material reference frame while leaving the definitive nature of material mass unexplained. Therefore, if potential and kinetic mechanical energy are removed from consideration in the rest energy quantity of the The unexpected discovery of the universal principle of energy (TUPE) resolves the historical enigma and points directly to the nature of mass. In addition, TUPE not only implies a complex open (nonconservative) ## Mass:Mass has been quantified but poorly defined in historical physics, perhaps because the indispensable first principle that reveals the hidden nature of mass was wholly unknown prior to the discovery of the universal principle of energy (TUPE). Hence, TUPE may be constructively compared with the discovery of thermodynamics in the 19th century. Indeed, TUPE clearly represents the vanguard of a new physics based on the irreducible nonmaterial primordial energy domain (NED). Interestingly, Einstein's mass-energy equivalence is valid only in his de facto absolute reference frame within which material mass and various forms of mechanical energy are conserved. Thus the apparent equivalence between the rest energy and the so-called relativistic mass of a material particle as expressed in the equation Einstein's assertion that "all energy behaves like matter" is certainly not valid in compound open (nonconservative) Even so, Einstein's 1938 position is consistent with his view that the universe is a deterministic closed or isolated (conservative) material system, with his lifelong atomistic view of physical reality just-as-it-is, 6 and with his explicit rejection of massless nonmechanical, nonmaterial energy as either a heuristic or a fundamental principle. 7 ## Einstein's original rest mass equation:Twenty-six years after James Clerk Maxwell died, Einstein described a gedanken (thought) experiment in which he derived the apparent equivalence of the mass and energy manifested by a material particle at rest in a closed or isolated (conservative) material system. Published as 1905 paper number five, m is the so-called rest mass (relativistic mass), E is rest energy, and c is the speed of light. When transposed m = becomes ^{E}/_{c²}E = mc². 9
The gedanken experiment considers a body at rest that emits plane waves of light ("ebenen Lichtwellen"). The result has unquestionably acquired worldwide fame. In the 21st century however, as noted above, it is not generally recognized that Einstein's summary expresses a certain amount of confusion concerning mechanical energy, the nature of material mass, and the propagation of massless (imponderable; nonmaterial) electromagnetic radiation. Moreover, the language he uses seems to imply that the radiation,
In the notation Einstein used in his 1905 paper, ## A zeroth law of physics:A zeroth law of physics might well state that scientific knowledge is progressive, therefore it is perpetually incomplete. The electromagnetic spectrum was essentially unknown in 1905. After Einstein's Thus, compared to a relatively simple, stand-alone closed or isolated (conservative) material system, The Energetic Holographic Paradigm (TEHP, pronounced "teep") model of physical reality just-as-it-is postulates that our holonomic material universe and space-time continuum are part of a complex open (nonconservative)
1 Einstein, Albert, and Infeld, Leopold. 2 Stachel, John. "Einstein's Search for General Covariance, 1912-1915;" 3 Maxwell, James Clerk. 4 Ref. 3, p. 89. 5 Ref. 1, pp. 197-198. 6 Einstein, Albert. "Theoretical Atomism" ("Theoretische Atomistik"). Paul Hinneberg, ed. 7 "In 1913, [Einstein] wrote in praise of Planck's 1896 essay against the energeticists ...,'in which it is shown that energetics is worthless as a heuristic method, indeed, that it even operates with untenable concepts'... ." 8
Einstein, Albert. "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?", 9 Ibid. In the notation used by Einstein in his 1905 paper, "Does the Inertia of a Body Depend Upon Its Energy Content?," _{9 × 1020}.Transposed, the result is the more familiar energy equation E = mc². Note well that Einstein's idealized thought experiment of 1905 derived the virtual or apparent so-called relativistic mass of a particle at rest in a closed or isolated (conservative) material system. Thus, contrary to modern practice, momentum is not a factor in his derivation of the equation. (cf. The more detailed description of Einstein's derivation of m = in Chapter 5, section 2.)
^{E}/_{c²}10 Einstein, Albert. "Does the Inertia of a Body Depend Upon Its Energy Content?"; 11 Einstein, Albert. John Stachel, editor. "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?", p. 314.
Last Edit: September 21, 2008. Comments and suggestions welcome. This paper is a work in progress. Copyright © 2002-2008 by Alan T. Williams. All rights reserved. |